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Escape Through a Small Opening: Receptor
Trafficking in a Synaptic Membrane
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We model the motion of a receptor on the membrane surface of a synapse
as free Brownian motion in a planar domain with intermittent trappings in
and escapes out of corrals with narrow openings. We compute the mean con-
finement time of the Brownian particle in the asymptotic limit of a narrow
opening and calculate the probability to exit through a given small opening,
when the boundary contains more than one. Using this approach, it is possi-
ble to describe the Brownian motion of a random particle in an environment
containing domains with small openings by a coarse grained diffusion pro-
cess. We use the results to estimate the confinement time as a function of the
parameters and also the time it takes for a diffusing receptor to be anchored
at its final destination on the postsynaptic membrane, after it is inserted in the
membrane. This approach provides a framework for the theoretical study of
receptor trafficking on membranes. This process underlies synaptic plasticity,
which relates to learning and memory. In particular, it is believed that the
memory state in the brain is stored primarily in the pattern of synaptic weight
values, which are controlled by neuronal activity. At a molecular level, the
synaptic weight is determined by the number and properties of protein channels
(receptors) on the synapse. The synaptic receptors are trafficked in and out of
synapses by a diffusion process. Following their synthesis in the endoplasmic
reticulum, receptors are trafficked to their postsynaptic sites on dendrites and
axons. In this model the receptors are first inserted into the extrasynaptic
plasma membrane and then random walk in and out of corrals through narrow
openings on their way to their final destination.
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plasticity.
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1. INTRODUCTION

The theoretical question we consider here is how receptors are directed
toward their final destination on the membrane of a biological cell, if their
movement is diffusion with neither a field of force nor a concentration
gradient (see Fig. 1)? How long does it take for a receptor to diffuse from
its point of insertion in the membrane to its final location? (by final loca-
tion, we mean a specific place in the membrane that the receptor occupies
for a period of time of between a few minutes to hours). What does this
time depend on? In this paper, we attempt to answer some of these ques-
tions by analyzing a mathematical model of the motion of the receptors.

The mathematical description of the diffusive motion of a recep-
tor on the cell membrane begins with the geometrical description of the
membrane and of the obstacles the random walking receptor encoun-
ters. We describe the motion of the receptor on the membrane as free
Brownian motion in the plane (thus neglecting the surface curvature),
with occasional trappings in and escapes from confinement regions, called
corrals (see Fig. 1). We describe the corrals as smooth two-dimensional
domains, whose boundary is reflecting, except for a narrow opening. The

Location of insertion

Anchoring position
PSD

Confinement domain

Brownian trajectory of a receptor

Fig. 1. Trajectory of a receptor on the surface of a dendritic spine. The receptor is inserted
somewhere on the spine and moves by diffusion until it finds its final location inside a con-
finement domain. In part of its trajectory the receptor may be attached to a protein such as
stargazin, which slows it down. Attached proteins may have a tail inside the cell, interacting
with other plasmic proteins, located inside the cell.
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mean time the receptor spends in a corral is called the confinement time of
the receptor (see Fig. 2). The main result of this paper is the calculation
of the confinement time as a function of the parameters of the problem,
and the application of this result to the interpretation of experimental
measurements. This mean first passage problem is different than activated
escape problems and its analysis leads to a different singular perturbation
problem than classical escape from an attractor. The escape of the recep-
tor can be effected also by thermal activation over the fence.

In Sections 2 and 3, we describe the biological context by recalling
some basic facts of receptor trafficking and its relation to synaptic
plasticity. In Section 4, we calculate the confinement time of a free

R

epsilon

Exit from a confinement domain

Fig. 2. A Brownian trajectory reflected at the boundary and exits through a narrow
opening. Typically, the trajectory fills a larger part of the domain.
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Brownian particle in a general domain with a small opening. We consider
confinement domains that are either obstacles or termination domains.
We apply the result to the estimation of the time it takes for a receptor
to enter its final destination domain. Such estimation is relevant in the
context of protein trafficking on a postsynaptic membrane. In Section 5,
the confinement time is computed when the boundary of the confinement
domain is made of charged proteins, creating a potential barrier with a
small opening. In Section 6, we compute the probability that a Brownian
particle exits a confinement domain when its trajectory can be termi-
nated inside the domain. Termination of the trajectory corresponds to the
anchoring of a receptor to a binding protein molecule. The notion of a
final location, or termination of trajectories by anchoring may not reflect
the fact that anchoring is very likely to be a reversible process. Anchor-
ing is itself a reversible process, whose lifetime may be quite short, on the
order of minutes, and it is known that even in the absence of synaptic
activity receptors can enter and leave a synapse. The present computations
can be used to estimate the confinement time as a function of biological
parameters and also to estimate the time it takes for a diffusing receptor
to find its functional destination, after insertion in the membrane. An
acronym identification is presented at the end of the paper.

2. FROM NEURO-BIOLOGY TO STATISTICAL PHYSICS

A synapse(1) is functionally the place of physical storage of the
“synaptic weight”, by which a signal coming from a pre-synaptic neu-
ron is modulated by the post-synaptic neuron. Brief repetitive electri-
cal stimulations of hippocampal neurons(2) are known to lead to a long
lasting enhancement in synaptic strength.(3,4) This phenomenon, referred
to as long term potentiation (LTP), is the evidence that activity induces
persistent changes in synapses and is believed to underlie learning and
memory. Stimulation at low frequencies induces a long lasting decrease in
synaptic strength, called long term depression (LTD). However, the various
steps of LTP/LTD induction are not yet fully elucidated and it is a chal-
lenge of modern neurobiology to identify all the biochemical mechanisms
involved in synapse regulation. In particular, modification of the synap-
tic weight (the measure of synaptic strength) during LTP can be caused
by a change in the biophysical properties of channels, such as conduc-
tances, selectivity to ions, gating, and/or by an increase in the total number
of protein channels (receptors).(5) Moreover, experimental evidence indi-
cates that new AMPA receptors (see table of acronyms at the end of the
paper) are inserted into synapses during LTP. AMPA receptors provide the
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primary depolarization(6) in excitatory neurotransmission and the insertion
or removal of the receptors affects the synaptic weight and therefore has
to be very well controlled.(7,8) Not only AMPA receptors are trafficked,
but also NMDA-receptors, which mediate Ca2+ influx into the synapse.
Both are glutamate-activated transmitters.

The number of AMPA receptors changes during synaptic plasticity
and, in addition, a specific form of the receptor cycles continuously on
and off the synaptic membrane. After their synthesis in the endoplasmic
reticulum AMPA receptors are trafficked to post-synaptic sites on either
neuronal dendrites or axons, but the route they take from intracellular ves-
icles to synapses is not yet clear. From a biological point of view, a critical
question is whether the receptors are directly inserted to the post-synaptic
density (PSD), which is the area of the membrane where synaptic sites face
the pre-synaptic terminal, or if they are first inserted into the extrasynaptic
plasma membrane and later on move to the PSD.

There are various forms of AMPA receptors, identified by their
GluR-subunits, which determine the biophysical properties of a channel,
e.g., their diffusion coefficient on the membrane, and therefore their
confinement times.(9) AMPA receptors containing GluR2-subunit are imper-
meable to calcium, whereas AMPA receptors with GluR1, three and
four subunits are permeable. Moreover, each subunit has a different
cytoplasmic tail (which dangle under the membrane), so that AMPA
receptors can be classified into two classes: first, the AMPA receptors with
long tails, such as GluR1, can only be inserted after synaptic activity, and
second, the AMPA receptors containing a GluR2 subunit, have a short
tail and are inserted constitutively.(8) Long and short tail AMPA receptors
trafficked on the surface membrane are associated with different proteins.
Recently,(9–11) single AMPA receptors attached to a Green Fluorescent
Protein have been observed to diffuse in the extrasynaptic membrane, but
to lose mobility when they enter a synaptic region. During their move-
ment, AMPA receptors associate with accessory and scaffolding proteins,
which are intracellular proteins that bind receptors and contribute to their
stabilization at synapses and assist their trafficking in various subcellar
domains.(8)

The turnover of AMPA receptors at synapses is regulated by a large
family of interacting proteins that thereby influence synaptic strength.
Receptor movement on the membrane of a neuron seems to be a diffusion
process (see review(9)), that moves rapidly within a constrained space
(corral) for short periods of time, and then periodically escapes from
these areas. The escape of a protein from any of these domains can
be accomplished either by hopping over the the corral fence and/or by
passing through the gaps when the membrane skeleton is transiently
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dissociated. Thus the membrane can be viewed as a patchwork of sub-
micron domains, within which diffusion is as fast as expected from theory.
Fences that restrict transitions from one compartment to another separate
these domains, thereby decreasing overall diffusion. Thus receptor traffick-
ing leads to the ubiquitous problem of escape of a random walker, as well
as to many other related mathematical problems.

3. LATERAL MOVEMENT ON A POSTSYNAPTIC MEMBRANE

Postsynaptic membranes of neurons contain specialized sub-domains,
referred to as PSD, where hundreds of different proteins and other mol-
ecules are clustered, all playing a specific role in the functioning of the
synapse. In particular, a change in synaptic plasticity is correlated with a
change of the biophysical properties of protein channels, due to covalent
modifications of channels (7), or with a change in the total number
of channels due, for example, to the insertion of new AMPA receptor
channels. It has been demonstrated in refs. 9–12 that receptors can dif-
fuse on the surface membrane of neurons and prior to their anchoring
the diffusive motion of receptors in the membrane is nearly free diffusion.
The random motion of receptors was observed in Ref. 9, and more spe-
cifically, it has been reported that the motion of a receptor can switch
between two different stages. In one stage, the receptor diffuses freely on
the surface, and in the second stage, it diffuses in a confined region, where
the diffusion constant is much smaller than that in the free diffusion stage.
The confined regions are described as specific subdomains of the synaptic
membrane and are typically few hundreds nanometers across.

The mean time a Brownian trajectory reaches a given subdomain (or
any one of a number of subdomains) of a given bounded domain, to
which it is confined, depends on the domain, on the number, and on the
sizes of the subdomains. The size of the confinement subdomain on a sur-
face of the post-synaptic membrane is not known exactly. However, when
a receptor enters a subdomain, where it can be anchored, the mean time it
stays there provides much information about the possible bonds the diffus-
ing receptor can make with scaffolding proteins. As a consequence of such
binding the speed of diffusion is reduced, thus increasing the mean exit
time and increasing the probability that the complex channel-scaffolding
protein meets a protein that will ultimately stop the complex at its final
location.

Once a receptor is inserted into the membrane far from the PSD, it
can remain in the extrasynaptic membrane instead of diffusing to the PSD.
It can even diffuse in the direction of the dendrite, never to come back,
and find another synapse, unless a potential barrier prevents the receptor
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from escaping. Such a barrier has not been reported so far. If we assume
that such a barrier exists, the mean time to reach a given confinement sub-
domain is finite. The purpose of this work is to describe the movement of
a receptor from the time it is inserted in the membrane until it is anchored
at the PSD.

When a receptor enters a confinement subdomain, it can either be
anchored there immediately or leave. We compute the time it takes for
a receptor to leave the confinement subdomain in two cases. First, when
the confinement subdomain can be approximated by a disk, whose bound-
ary is reflecting, except for one or more small openings that allow the
receptor to escape. Second, when the confinement subdomain is bounded
by a known potential barrier created by proteins. Explicit computation
of the mean confinement time relates it to the geometry of the domain
and to the diffusion coefficient of the complex receptor-scaffolding pro-
tein. Thus, we expect that combining those computational results with
experimental studies, it will becomes possible to study the effect on
the movement of potential candidates for scaffolding proteins that bind
to the receptor, thereby decreasing its diffusion coefficient. The increase in
the confinement time was reported in ref. 9 when a receptor diffuse inside
a confinement domain: it can be due to the binding with a scaffolding
protein. To take into account the effect of the confinement subdomains,
observed in a synapse, we will define later on, an effective diffusion con-
stant that describes the random walk of ideal receptors in synapse. The
definition is based on the diffusion time from one confinement subdomain
to another. The coarse grained diffusion constant is computed by using
the mean confinement time.

The increase in confinement time was reported in ref. 9. Combining
the probability that a receptor enters and leaves a confinement domain
without being anchored (a synapse contains many confinement subdo-
mains), we define an effective diffusion coefficient that describes the ran-
dom walk of receptors from one confinement subdomain to another as a
coarse grained diffusion process.

Finally, a synapse is considered to be the fundamental unit of the
memory at a subcellular level and is a reliable storage compartment of
information over years, while the life time of its basic constituent recep-
tors, such as AMPA receptors, is of the order of few hours.(13) In order
to maintain the synaptic weight and to insure the stability of the syn-
apse in the absence of any input signal, a daily turnover of receptors has
to be very well regulated. Defected receptors have to be replaced without
increasing the total number of active receptors. It is not clear what are the
fundamental mechanisms that regulate this turnover, neither is known the
precise ways by which the number of receptors is detected at each moment
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of time. Finally, the estimation of the confinement time gives a constraint
of the time it takes for a receptor to travel on the membrane before being
anchored.

4. RECEPTOR MOVEMENT ON A MEMBRANE

Receptors diffuse on the surface membrane of a nerve cell, which
is composed of many sub-compartments of various sizes and contains
assemblies of various proteins, such as the PSD. Each compartment can
absorb a receptor or release one. The movement of receptors is not sim-
ply described as a free diffusion in a surface with obstacles, but rather
the movement can be decomposed into two type of time-periods; one time
period is defined when the receptor diffuses freely and the second when
it is confined in a corral. There, the receptor is trapped, but eventually
escapes. Back on the free side of the membrane, it can reach another con-
finement domain, until it is finally anchored for a certain time somewhere.
We calculate below the mean time of each type.

4.1. Mean Escape Time from a Bounded Domain

We begin with a receptor inside a confinement subdomain �, where
it can be bound to a protein. The mean time it stays in the confinement
subdomain is called the confinement time. We assume that the boundary
∂�, is reflecting for the diffusing receptor, except for a small opening. We
represent the opening as an absorbing part of the boundary, ∂�a , and the
remaining part of the boundary, ∂�r =∂�−∂�a , is reflecting. The length
of ∂�a is assumed small. More specifically, if ∂�1 is the connected com-
ponent of ∂� that contains ∂�a , assume that

ε = |∂�a|
|∂�1|

�1.

First, we review the general theory.(14,15) We assume that ∂� is an
analytic surface and that ∂�a is a d − 1-dimensional subdomain of ∂�,
whose d − 2-dimensional boundary is also analytic (for d = 2 the lat-
ter boundary consists of isolated points). The transition probability den-
sity function of a Brownian trajectory x(t), with diffusion constant D, is
defined as

p(x, t |y) dx =Pr {x(t)∈x +dx |x(0)=y} .
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It satisfies the diffusion equation

∂p(x, t |y)

∂t
=D�xp for x,y ∈�

with the initial condition

p(x,0 |y)= δ(x −y)

and the boundary conditions

∂p(x, t |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�,

p(x, t |y) = 0 for x ∈ ∂�a, y ∈�.

The first passage time to the absorbing boundary is defined as

τ = inf {t >0 : x(t)∈ ∂�a}

and the the mean first passage time (MFPT) to ∂�a , given that x(0)=y,
is defined as the conditional expectation

τ̄y =E [τ |x(0)=y]=
∫ ∞

0

∫
�

p(x, t |y) dx dt.

The confinement time τ̄ is defined as

τ̄ =Eτ =
∫

�

E [τ |x(0)=y]p0(y) dy,

where p0(y) is the probability density function (pdf) of the initial point y.

4.2. The Boundary Value Problem for τ̄ x

To facilitate notation we use

u(x)= τ̄x .
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The function u(x) satisfies the mixed Neumann–Dirichlet boundary value
problem (see for example, ref. 14)

D�u(x) = −1 for x ∈�, (4.1)
∂u(x)

∂n
= 0 for x ∈ ∂�− ∂�a, (4.2)

u(x) = 0 for x ∈ ∂�a, (4.3)

where D is the diffusion coefficient. Eqs. (4.1)–(4.3) are a classical mixed
boundary value problem in potential theory that has been discussed at
length in the literature. Explicit expressions for the solution are known for
several domains, including a circular disk(16) (see Section 4.3.1). The sin-
gular perturbation problem for a general domain with a small opening has
not been solved so far.

We assume, for convenience, that D = 1. To determine the solution
of the mixed boundary value problem (4.1)–(4.3) in terms of Neumann’s
function N(x, ξ), we recall(17) that N(x, ξ) is the solution of the bound-
ary value problem

�xN(x, ξ) = −δ(x − ξ) for x, ξ ∈�, (4.4)
∂N(x, ξ)

∂n(x)
= − 1

|∂�| for x ∈ ∂�, ξ ∈�, (4.5)

and is defined up to an additive constant. It has the form

N(x, ξ)=




1
σd−1

|x − ξ |−d+2 +vS(x, ξ) for d >2, x, ξ ∈�,

− 1
2π

log |x − ξ |+vS(x, ξ) for d =2, x, ξ ∈�,

(4.6)

where vS(x, ξ) is a regular harmonic function, σd−1 is the surface area of
the unit sphere in R

d .
To derive an integral representation of the solution, we multiply Eq.

(4.1) by N(x, ξ), Eq. (4.4) by u(x), integrate with respect to x over �, and
use Green’s formula to obtain the identity

∮
∂�

N(x(S), ξ)
∂u(x(S))

∂n
dS + 1

|∂�|
∮

∂�

u(x(S)) dS

(4.7)=u(ξ)−
∫

�

N(x, ξ) dx.
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The second integral on the left-hand side of Eq. (4.7) is an additive con-
stant, so we obtain the representation

u(ξ)=
∫

�

N(x, ξ) dx +
∫

∂�a

N(x(S), ξ)
∂u(x(S))

∂n
dS +C′, (4.8)

where C′ is a constant to be determined from the boundary condition
(4.3), S is the d −1-dimensional coordinate of a point on ∂�a , and dS is
a surface area element on ∂�a . We set

g(S)= ∂u(x(S))

∂n
,

choose ξ =ξ(S)∈∂�a , and use the boundary condition (4.3), to obtain the
equation

0=
∫

�

N(x, ξ(S)) dx +
∫

∂�a

N(x(S′), ξ(S))g(S′) dS′ +C′ (4.9)

for all ξ(S)∈∂�a . The first integral in Eq. (4.9) is a regular function of ξ

on the boundary. Indeed, due to the symmetry of the Neumann function
we have from Eq. (4.4)

�ξ

∫
�

N(x, ξ) dx =−1 for ξ ∈� (4.10)

and

∂

∂n(ξ)

∫
�

N(x, ξ) dx =− |�|
|∂�| for ξ ∈ ∂�. (4.11)

Equation (4.10) and the boundary condition (4.11) define the integral∫
�

N(x, ξ) dx as a regular function, up to an additive constant. Thus Eq.

(4.8) can be written as

u(ξ)=
∫

�

N(x, ξ) dx +
∫

∂�a

N(x(S), ξ)g(S) dS +C, (4.12)

and both g(S) and C are determined by the absorbing condition (4.3)

0=
∫

�

N(x, ξ(S)) dx +
∫

∂�a

N(x(S′), ξ(S))g(S′) dS′ +C

(4.13)
for ξ(S)∈ ∂�a.
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Eq. (4.12) can be considered an integral equation for g(S) and C. The
normal derivative g(S) is a regular function of the d − 1 variables S =
(s1, . . . , sd−1) for ξ(S) in the d −1 dimensional subdomain ∂�a , but devel-
ops a singularity as ξ(S) approaches the d − 2-dimensional boundary of
∂�a in ∂�.(18) Both can be determined from the representation (4.12) if
all functions in Eq. (4.13) and the boundary are analytic. In that case the
solution has a series expansion in powers of arclength on �a .

4.3. MFPT Through a Small Opening in a Planar Domain

When the size of the absorbing boundary is small an asymptotic
approximation to the constant C can be found from Eq. (4.13). We can
assume that the constant term in the expansion of the first integral in
equation Eq. (4.13) vanishes, because otherwise, it can be incorporated
into the constant C. With this assumption in mind, we rename the con-
stant Cε.

Consider now a bounded domain � ⊂ R
2, whose boundary ∂� has

the representation (x(s), y(s)), the functions x(s) and y(s) are real analytic
in the interval 2|s|� |∂�|=1, and

(
x

(
−1

2

)
, y

(
−1

2

))
=

(
x

(
1
2

)
, y

(
1
2

))
.

We assume the absorbing part of the boundary ∂�a is the arc

∂�ε ={|s|<ε}

and ∂�−∂�ε is reflecting to Brownian trajectories in �. All variables are
assumed dimensionless. We assume here that Neumann’s function,

N(x, y; ξ, η)=− 1
2π

log
√

(x − ξ)2 + (y −η)2 +vS(x, y; ξ, η), (4.14)

is known (that is, the harmonic function vS(x, y; ξ, η) is known). We note,
however, that vS(x, y; ξ, η) is regular as long as either (x, y)∈� or (ξ, η)∈
�, or both. If (x, y) ∈ ∂� and (ξ, η) ∈ ∂�, then the regular part contains

the same singularity as −(1/2π) log
√

(x − ξ)2 + (y −η)2, so that the singu-
lar part acquires a factor of 2 on the boundary.
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In this setup Eq. (4.13) can be written as∫
�

∫ {
vS(x(s′), y(s′); ξ(s), η(s))

}
dx dy − 1

2π
log

√
(x − ξ)2 + (y −η)2

+
∫

|s′|<ε

{
ṽS(x(s′), y(s′); ξ(s), η(s))

− 1
π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
×g(s′) ds′ =−Cε, (4.15)

where

ṽS(x(s′), y(s′); ξ(s), η(s))=vS(x(s′), y(s′); ξ(s), η(s))

+(1/2π) log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

is a regular function of its variables. The double integral in the first line

of Eq. (4.15) is the regular function
∫

�

∫
N(x, y; ξ(s), η(s)) dx dy and can

be expanded into a power series in the interval |s|<ε,

∫
�

∫
N(x, y; ξ(s), η(s)) dx dy =

∞∑
j=1

Njs
j , (4.16)

where Nj are known coefficients. As mentioned above, the sum is assumed
to begin with j =1. Now, we expand

g(s)=
∞∑

j=0

gj s
j , ṽS(x(s′), y(s′); ξ(s), η(s))=

∞∑
j=0

vj (s
′)sj (4.17)

for |s|<ε, where vj (s
′) are known coefficients and gj are unknown coeffi-

cients, to be determined from Eq. (4.15).
To expand the logarithmic term in the last integral in Eq. (4.15), we

recall that x(s′), y(s′), ξ(s), and η(s) are analytic functions of their argu-
ments in the intervals |s|<ε and |s′|<ε, respectively. In view of the obvi-
ous identities (x(s), y(s)) = (ξ(s), η(s)), and [x′(s)]2 + [y′(s)]2 = 1, we can
write for all n�0∫ ε

−ε

(s′)n log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2 ds′

=
∫ ε

−ε

(s′)n log
{
|s′ − s|

(
1+O

(
(s′ − s)2

))}
ds′. (4.18)
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We keep in Taylor’s expansion of log
{|s′ − s| (1+O

(
(s′ − s)2

))}
only the

leading term, because higher-order terms contribute positive powers of ε

to the series

∫ ε

−ε

log(s − s′)2 ds′ =4ε (ln |ε|−1)+2
∞∑

j=1

1
(2j −1)j

s2j

ε2j−1
. (4.19)

For even n�0, we have

∫ ε

−ε

(s′)n log(s − s′)2 ds′ = 4

(
εn+1

n+1
log ε − εn+1

(n+1)2

)

−2
∞∑

j=1

s2j εn−2j+1

j (n−2j +1)
, (4.20)

whereas for odd n, we have

∫ ε

−ε

(s′)n log(s − s′)2 ds′ =−4
∞∑

j=1

s2j+1

2j +1
εn−2j

n−2j
. (4.21)

Using the above expansions in Eq. (4.15), we obtain a linear system of
equations for the coefficients gj , that define them as linear functions of the
constant Cε. In particular, g0 is proportional to Cε.

The system of equations is obtained by comparing the coefficients of
like powers of s in the expansion of (4.15), using the expansions (4.16)–
(4.21),

0=−
∞∑

j=1

Njs
j +

∫ ε

−ε

{−1
2π

log
[
|s′ − s|2

(
1+O

(
(s′ − s)2

))]

+
∞∑

j=0

vj (s
′)sj




∞∑
j=0

gj s
′j ds′ +Cε,

which gives the term of degree 0 as

ε (ln |ε|−1) g0 +
∑
p

(
ε2p+1

2p +1
log ε − ε2p+1

(2p +1)2

)
g2p

= π

2

∫ ε

−ε

v0(s
′) ds′ +Cε. (4.22)
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The general term for j >0 is given by

0 = −N2j + 1
π

∞∑
p=0

g2p

ε2p−2j+1

(2p −2j +1)j
+

∫ ε

−ε

v2j (s
′)g(s′) ds′,

0 = −N2j+1 + 2
π

∞∑
p=0

g2p+1
ε2p−2j+1

(2p −2j +1)(2j +1)
+

∫ ε

−ε

v2j+1(s
′)g(s′) ds′.

Equation (4.22) and

1
2

∫ ε

−ε

g(s)ds =
∑
p

ε2p+1

(2p +1)
g2p

determine Cε. Indeed, integrating Eq. (4.1) over the domain, we see that

∫ ε

−ε

g(s) ds =−|�|, (4.23)

and using the fact that
∫ ε

−ε

v0(s
′) ds′ =O(ε), we find that the leading term

in the expansion of Cε in Eq. (4.22) is

Cε = |�|
π

[
log

1
ε

+O(1)

]
for ε �1. (4.24)

If the diffusion coefficient is D, Eq. (4.12) gives the MFPT from a point
(ξ, η)∈� as

τ̄(ξ,η) =u(ξ, η)= 1
D

∫
�

N(x, ξ) dx + |�|
πD

[
log

1
ε

+O(1)

]
for ε �1.

(4.25)

The leading term in the expansion (4.25) is insufficient in general, because
log ε may be comparable to 1, even if epsilon is quite small. It is impor-
tant to obtain the O(1) term in the expansion. This is done below for a
circular domain.
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4.3.1. MFPT Through a Small Opening in a Circular Domain

The explicit solution uε of the boundary value problem

D�uε(r, θ) = −1 for r <R,

∂uε(R, θ)

∂r
= 0 for ε <θ <π, −π <θ <−ε, (4.26)

uε(R, θ) = 0 for − ε <θ <ε,

is given in ref. 16. The application of the power series expansion method
of the previous section begins with the solution of the Neumann problem
in polar coordinates (see Appendix I)

D�vε (R, θ) = 0 for r <R,

∂vε(R, θ)

∂r
= h(θ) for r =R.

It has the representation

vε(r, θ)=− R

2πD

∫ 2π

0
log

(
R2 −2rR cos(θ −φ)+ r2

)
h(φ) dφ +Cε,

(4.27)

where Cε is a constant to be determined. To solve Eq. (4.26), we set

uε(r, θ)= R2 − r2

4D
+ vε(r, θ)

D
, (4.28)

where

�vε (R, θ) = 0 for r <R, (4.29)
∂vε (R, θ)

∂r
= R

2
=Rf (θ) for |θ |>ε, (4.30)

vε (R, θ) = 0 for |θ |<ε. (4.31)

We set

∂vε (R, θ)

∂r
=Rg (θ) for |θ |<ε (4.32)

and use the Green function of the Neumann problem for a disk to write
the solution of the boundary value problem (4.29) as
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vε (r, θ) = −R2

4π

∫
|φ|>ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
dφ

−R2

2π

∫
|φ|<ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
g (φ) dφ +Cε.

(4.33)

This gives

uε (r, θ)

= R2 − r2

4D
− R2

2πD

∫
|φ|<ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)

×
(

g (φ)− 1
2

)
dφ +Cε.

To estimate the unknown function g, we use the absorbing boundary con-
dition of vε at r =R and θ = 0. The function g and the constant Cε can
be determined from

0=vε (R, θ)=−R2

2π

∫
|φ|<ε

log (cos 2 [1− cos (θ −φ)])

×
{
g (φ)− 1

2

}
dφ +Cε, (4.34)

because ∫
|φ|<π

log {2 [1− cos (θ −φ)]} dφ =0.

Using the expansion procedure described above (see also Appendix II), we
obtain that

Cε =R2
(

0.73+ (1+O (ε)) ln
1
ε

)
, (4.35)

when all series are truncated at O
(
θ12

)
. The expansion of the exact solu-

tion of ref. 16 gives the value log 2 = 0.6931471806. Now, in the limit of
small opening Eq. (4.33) gives

vε (0,0)=Cε ∼R2
(

0.73+ ln
1
ε

)
.
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It follows from (4.28) that the MFPT from the center of the disk to the
absorbing boundary is given by

τ̄0 =uε (0,0)∼ R2

D

(
0.98+ ln

1
ε

)
. (4.36)

The exact value of the constant term is log 2 + 1/4 = 0.9431471806,(16)

which indicates an error of about 4% of the power series approximation.

Remark 1. In three-dimensional diffusion, if a particle (a receptor
inside the confinement domain) is bound to a scaffolding protein of mass
Ms, the diffusion constant of the system of the two proteins has to be
recompute according to Einstein’s law(14)

Ds = kBT

(M +Ms)γrs
,

where kB is Boltzmann’s constant, T is the absolute temperature, M +
Ms is the mass of the complex receptor–protein, and γrs is the viscosity
coefficient of the complex. Assuming the volume of the complex is the
sum of the volumes of its components, Stokes’ law, as used in Einstein’s
formula,(14) gives

γrs =γr +γs,

where γr, γs are the friction coefficients of the receptor and the scaffolding
protein, respectively. The new diffusion constant of the system is now,

D̄c = R2

kBT
(M +Ms) (γr +γs) .

Remark 2. For a cylindrical model of a protein moving on mem-
brane surface, the diffusion constant has been derived in ref. 19 and is
given by

D = kT

4πµh

(
log

(
µh

µ′R

)
−γE

)
, (4.37)

where R and h are, respectively, the radius and the height of the cylin-
der, µ is the viscosity, µ′ is the viscosity coefficient of the aqueous phase
and γE is Euler’s constant. When a receptor of radius R1 is bound to
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a scaffolding protein such as stargazin of radius R2, we approximate the
shape of the two link proteins as a cylinder of radius R1 +R2. The diffu-
sion constant for the two proteins becomes

D = kT

4πµh

[
log

(
µh

µ′ (R1 +R2)

)
−γE

]
.

Sometimes, the scaffolding protein is bound to a receptor and increases
only the total length h and not the total radius. This is the case for
PICK or GRIP proteins binding to an AMPA receptor, as describe in
the review.(9) When the total length equals h1 +h2, the diffusion constant
becomes:

D = kT

4πµ(h1 +h2)

[
log

(
µ(h1 +h2)

µ′R

)
−γE

]
.

In general, a receptor is made of several sub-units which are integral mem-
brane proteins(20). Accessory or scaffolding proteins may be bound to the
receptors and it is not clear if these proteins are always bound to the
receptors, or only under specific conditions. Some of the receptor’s subun-
its may be stored in intracellular compartments and may be inserted in the
plasma membrane only under specific circumstances.

Remark 3. If the surface of the membrane contains many confine-
ment domains, the diffusion of a receptor can be described on a coarse
time scale as a random walk between confinement domains (or slower
Brownian motion). When the receptor is not in a confinement domain and
is free of the scaffolding protein, its Brownian motion is much faster than
that while it is inside a confinement domain and attached to a scaffolding
protein, because its diffusion coefficient is larger in the former than in the
latter case. Thus, we can describe the motion of the receptor as a random
walk between the confinement domains.(21,22) Assuming that the charac-
teristic distance between (circular) confinement domains is d, the coarser
random walk can be described as diffusion with a diffusion constant

Da = d2

τ̄0
= d2D

R2

(
log 2+1/4+ ln

1
ε

) , (4.38)
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assuming the diffusion is isotropic. This assumption is justified if the nar-
row openings are distributed uniformly on the circles. If there is a pre-
ferred direction, the two-dimensional diffusion tensor becomes anisotropic
with a larger diffusion coefficient in the preferred direction.(14)

When the synapse contains circular confinement domains of typi-
cal area 350 nm2, (radius R ∼ 10.5 nm), the mean distance between the
domains is around 0.13µm, and the free diffusion constant is 0.1µm2/s,
the effective coarse grained diffusion constant is about 0.02 µm2/s, accord-
ing to Eq. (4.38).

4.3.2. The Mean Confinement Time

Averaging the MFPT over a uniform distribution of initial positions
inside the disk gives

τ̄m = 1
πR2

∫ 2π

0

∫ R

0
uε(r, θ)r dr dθ, (4.39)

where uε(r, θ) is given by (4.28), and vε(r, θ) is the solution of Eq. (4.34).
This gives

1
πR2

∫ 2π

0

∫ R

0

R2 − r2

4D
r dr dθ = R2

8D

and

1
πR2

∫ 2π

0

∫ R

0
vε(r, θ) r dr dθ =Cε. (4.40)

We have used the fact that for all r <R∫ 2π

0
log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
dθ =0.

It follows that the mean confinement time τ̄m is given by

τ̄m =Cε + R2

8D
=R2

(
log 2+ 1

8
+ (1+O (ε)) ln

1
ε

)
∼ R2

D

(
0.818+ ln

1
ε

)
.

(4.41)

The difference between the mean time τ̄m and the confinement time, com-
puted at the origin, is not significant for the scale we are interested in. As
is typical for the exit problem,(14) the MFPT is independent of the initial
point, except for a layer near the absorbing boundary.
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4.3.3. Numerical Evaluations

To estimate the mean confinement time τ̄ for a receptor, we use the
values of the different parameters reported in refs. 10 and 23. For a recep-
tor inside a confinement domain (see Fig. 2), we take D = 0.004 µm2/s,
for R = 0.25µm, ε = 10−3 nm/(2π ×0.25) to find that τ̄ = 125 s. For a
diffusion constant of D = 0.02 µm2/s, which is the free diffusion constant
in a membrane, τ̄ =25. For a domain of area 350 nm2, which we assume is
well approximated by a disk, using a diffusion coefficient of 0.025µm2/s,
we find that the mean confinement time is around τ̄ =35 s.

4.3.4. Confinement by a Potential Barrier

If a receptor is confined to the corral by a high potential barrier
�(x, y) (relative to the thermal energy per unit mass), with a single saddle
point on its crest, the confinement domain � is bounded by the crest of
the potential barrier (characterized by ∂�/∂n=0 on the crest). We assume
that the potential barrier is narrow relative to the size of the domain and
that �(x, y) = 0 away from the barrier. If there is a single minimum of
the energy of the barrier (at a saddle point), the calculations of ref. 14,
[Ch. 8.5, Eqs. (8.5.7)–(8.5.13)] give the confinement time for a three-dimen-
sional diffusion as

τ̄ = |�|ω‖
Dω⊥

exp
{

E

γD

}
, (4.42)

where

ω2
‖ = ∂2�

∂s2
at the saddle point,

ω2
⊥ = −∂2�

∂n2
at the saddle point,

s is arclength along ∂�, D is the diffusion coefficient, E is the energy of
the saddle point per unit mass on the barrier (the lowest energy of the
barrier), and T is absolute temperature. The factor ω‖ is the frequency
of oscillation in the stable direction of the saddle point (parallel to the
boundary), and ω⊥ is the imaginary frequency in the unstable direction
of the saddle point (e.g., perpendicular to the boundary). Note that in the
case at hand �=0 throughout �, except for a boundary layer, whose con-
tribution to the integral is negligible. Thus∫

�

∫
e−�/γD dx dy =|�|,
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which simplifies Eq. (8.5.13) in ref. 14 to the result (4.42). The case of
multiple saddle points is discussed in.(14)

If the energy of the boundary is constant, E, the MFPT is given by

τ̄ =
√

2π

D

√
γ |�|

ω⊥|∂�| exp
{

E

γD

}
, (4.43)

where γ is the friction coefficient (this is case (i) in [ref. 14, Eq. (8.5.15)]).
It has not been established experimentally that there is hopping of AMPA
receptors over a potential barrier. Rather, it is believed that the barrier of
the corral is not stable and breaks down intermittently.

4.3.5. Mean Time to Enter the PSD

The mean time for a receptor to enter the PSD after insertion in
the membrane depends on the diffusion coefficient, the organization of
the synapse, the layout of confinement domains, and the distribution of
scaffolding proteins. The latter can decrease the diffusion constant when
attached to the receptor (see Fig. 1). When the diffusion of the receptor
is confined by a reflecting barrier to a domain � that contains a corral ω,
and the receptor is inserted somewhere is �−ω, the entrance problem to
ω is the exit problem from �−ω. Thus, if the opening ∂ωa in ∂ω is small,
that is, if ε=|∂ωa|/|∂ω|�1, the result (4.25) is still valid. In particular, for
an annulus D(R1,R2), of inner radius R1 and outer radius R2, where the
inner circle r =R1 represents the boundary of a PSD and contains a small
opening of length εR1, and the outer circle models a barrier that prevents
the escape of the receptor, Eq. (4.25) gives

τ̄ ∼ R2
2 −R2

1

D
ln

1
ε
. (4.44)

The mean entrance time for the annulus D(R1,R2) can be found
explicitly if the inner circle is absorbing while the outer circle is reflecting.
The boundary value problem (4.1)–(4.3) becomes

D�u = −1 for R1 <r <R2 (4.45)
∂u (R2, θ)

∂r
= 0, u (R1, θ)=0.

The solution (in radial symmetry) is given by

u (r, θ)= R2
1 − r2

4D
+ R2

2

2D
log

r

R1
.
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In particular, if R1 � R2, we can write R2 = R, R1 = εR, with ε � 1.
Asymptotically, the MFPT from the outer circle to the inner circle is

τ̄ ∼ R2

2D
ln

1
ε
. (4.46)

In the same limit Eq. (4.44) becomes

τ̄ ∼ R2

D
ln

1
ε
. (4.47)

Comparing (4.46) with (4.47), we find that one is twice the other. This
result indicates that the aspect angle of the absorbing boundary from it’s
center determines the pre-logarithmic factor. While 2π for a full circle, it
is π for an arc of length 2ε on an arc of length O(1).

4.3.6. Numerical Computation of the Time to Enter
into a Confinement Domain

The range of exit times from a confinement domain is between 35 and
125 s, depending on the diffusion constant and on the size of the domain.

Using a free diffusion constant D = 0.1µm2/s, for a domain of area
350 nm2, when the receptor is inserted at a distance of 1µm (we assume
that the radius R of the unfolded synapse is 1µm), a lower bound on the
expected insertion time is τ̄ = 25 s. This is an underestimate, because we
have used only one the leading term in the expansion of the MFPT in Eq.
(4.25).

For a diffusion constant D = 0.02 µm2/s, which is calculated by aver-
aging over many confinement periods, a PSD of diameter 350 nm, (that is,
for R=4 µm), we find that a receptor enters in about 78 s. These numbers
are within the range of values communicated in ref. 9.

Remarks

(i) The diffusion process does not require any other energy than the
temperature of the cell, and for that reason receptor movement does not
cost any chemical energy, but it requires some time, of the order of a few
minutes. (ii) The time to anchoring is the sum of the time to enter and
time the to reach the final position, which is of the order of the con-
finement time. The time to anchoring, after insertion of the receptor in
a membrane containing several confinement domains, is of the order of
a few minutes. The more often a receptor’s trajectory enters confinement
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domains, the longer is the time to to its anchoring, up to several min-
utes. Binding to scaffolding proteins that change the diffusion constant
increases the mean time to anchoring. (iii) The time to enter a PSD is
more sensitive to the location of the point of insertion rather than to the
size of the small opening in the barrier. In the regime, where the diffusion
outside is faster than inside the confinement domain, the time spent inside
is the main contributor to the anchoring time.

5. THE EXIT DISTRIBUTION

When the barrier contains several narrow openings of various sizes
the probabilities of exit through given openings are not necessarily the
same. Specifically, we consider the problem of escape from a planar
domain �, whose boundary, ∂� (|∂�| = 1), is reflecting, except for the n

absorbing arcs |s − sk| < εk, with
∑n

k=1 εk = ε � 1. The probability that a
trajectory that starts at the point (x, y) ∈ � escapes through arc i is the
solution of the boundary value problem

�u(x, y) = 0 for (x, y)∈�

∂u(x(s), y(s))

∂n
= 0 for |s − sk|>εk, ∀k (5.48)

u(x(s), y(s)) = δi,k for |s − sk|<εk, for each k =1,2, . . . , n,

δi,k =1 if i =k and zero otherwise. As above, we define the flux density on
the absorbing boundary as an unknown function

g(s)= ∂u(x(s), y(s))

∂n
.

The representation formula for the solution is given by

u(ξ, η)=
n∑

k=1

∫ sk+εk

sk−εk

N(x(s), y(s); ξ, η)g(s) ds +C, (5.49)

where N(x, y; ξ, η) is given in (4.14) and C is a constant. The function
g(s) is defined in each one of the intervals |s − sk|<εk and has to satisfy
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the boundary condition∫ sk+εk

sk−εk

{
vS(x(s′), y(s′); ξ(s), η(s))

− 1
2π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
×g(s′) ds′ =−C + δi,k for all

∣∣s − sj
∣∣<εj , j, k =1,2, . . . , n.

(5.50)

Next, we expand g(s) in Taylor’s series in each interval |s − sk|<εk,

g(s)=
∞∑

j=0

g(j)(sk)

j !
(s − sk)

j (5.51)

and determine the coefficients. The solvability condition for the problem
(5.48) is

n∑
k=1

∫ sk+εk

sk−εk

{
vS(x(s′), y(s′); ξ(s), η(s))

− 1
2π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
×g(s′) ds′ =0, (5.52)

Using the expansions (4.19)–(4.21) and (5.51) in the solvability condition
(5.52), we obtain

n∑
k=1

∫ εk

−εk

∞∑
j=0

(1+O(εk))
g(j)(sk)

j !
sj ds =0,

which is

n∑
k=1

∞∑
j=0

g(2j)(sk) (1+O(εk))

(2j)!

ε
2j+1
k

2j +1
=0. (5.53)

Using the expansions (4.19)–(4.21) in Eqs. (5.50) and (5.52) and equating
the coefficients of like powers of s − sk on both sides of Eq. (5.50), we
obtain at the leading order

∞∑
j=0

ε
2j+1
k g(2j)(sk)

(2j)!(2j +1)

(
log εk − 1

2j +1

)
= δi,k −C

4



1000 Holcman and Schuss

and for higher orders

∞∑
j=0

ε
j+1
k g(j)(sk)

j ! (j −2m+1)
=0 for k =1,2, ..., n, m=1,2, ...

First, we observe that

g(2j+1)(sk)

(2j +1)!
=0 for k =1,2, ..., n, j =1,2, ...

To determine the even order derivatives and the constant C, we set

xj,k = ε
2j+1
k g(2j)(sk)

(2j)!
,

and find that xj,k and C are the solutions of the system

∞∑
j=0

xj,k

2j +1

(
log εk − 1

2j +1

)
= δi,k −C

4
, for k =1,2, ..., n, (5.54)

∞∑
j=0

xj,k

2j −2m+1
= 0, for k =1,2, ..., n, m=1,2, ... (5.55)

n∑
k=1

∞∑
j=0

xj,kε
2j+1
k

2j +1
= 0. (5.56)

If yj,k is the solution of the system

∞∑
j=0

yj,k

2j +1
= 1,

∞∑
j=0

yj,k

2j −2m+1
= 0 for k =1,2, ..., n, m=1,2, ...

then

xj,k = δi,k −C

4 log εk

yj,k

(
1+O

(
1

log εk

))
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and Eq. (5.56) gives

C ∼

1
log εi

∞∑
j=0

yj,iε
2j+1
i

2j +1

n∑
k=1

1
log εk

∞∑
j=0

yj,kε
2j+1
k

2j +1

.

Note that

n∑
k=1

∫ sk+εk

sk−εk

vS(x(s), y(s); ξ, η)g(s) ds =O(ε)

in the representation formula (5.49). It follows that the exit probability
through arc i is

u(ξ, η)∼

1
log εi

∞∑
j=0

yj,iε
2j+1
i

2j +1

∑n

k=1

1
log εk

∞∑
j=0

yj,kε
2j+1
k

2j +1

. (5.57)

If all εk are equal, Eq. (5.57) reduces to the obvious result

u(ξ, η)= 1
n
.

The above equations can be solved explicitly for a disk. When the series
are truncated at 10 terms, we obtain the probability of escape at arc i as

Ci ∼
εiy0,i

ln εi∑n

k=1

εky0,k

ln εk

. (5.58)

As mentioned in Section 5, if the openings on the circles are not dis-
tributed uniformly, the diffusion tensor of the coarse grained Brownian
motion becomes anisotropic and the diffusion in one direction will be
faster than in the orthogonal direction, depending on the distribution of
exit points.
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6. ESCAPE BEFORE ANCHORING

When a receptor enters a PSD �, it can either be anchored for a
certain time there by a specific protein or it can leave the PSD without
binding. In this section, we calculate the probability of such an event. We
formulate the problem for a general domain and give an explicit compu-
tation for a planar disk.

We model the anchoring of the receptor as the termination of its
trajectory. Termination of diffusing trajectories introduces a killing mea-
sure.(14) In the presence of a killing measure k(x) the transition probability
density of a trajectory, p(x, t |y) is in fact the probability density to reach
the point x at time t without being killed or absorbed. It satisfies the ini-
tial-boundary value problem.(14)

∂p(x, t |y)

∂t
= −∇x ·J (x, t |y)−k(x)p(x, t |y) for x,y ∈�, (6.59)

p(x, t |y) = 0 for x ∈ ∂�a y ∈�,

∂p(x, t |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�, (6.60)

p(x,0 |y) = δ(x −y) for x,y ∈�, (6.61)

where the probability flux density vector is given by

J (x, t |y)=−D∇xp(x, t |y),

and ∂�r is the reflecting part of the boundary and ∂�a the absorbing
part. For a general domain binding proteins are spread over a subdo-
main �p ⊂ �. We denote by T the time to killing and by τ the time to
leave through ∂�a . The probability of a trajectory that starts at y to leave
before being killed is the total flux through the absorbing boundary,

Pr{τ <T |y}=
∫ ∞

0

∫
∂�a

J (x, t |y) ·n(x) dSx dt. (6.62)

Integrating Eq. (6.59) with respect to x and t and using the boundary and
initial conditions (6.60) and (6.61), we obtain from (6.62) the representa-
tion

Pr{τ <T |y}=1−
∫

�

k(x)G(x |y) dx, (6.63)
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where

G(x |y)=
∫ ∞

0
p(x, t |y) dt.

Integrating Eq. (6.59) only with respect to t , we see that the function
G(x |y) is the solution of the boundary value problem

D�xG(x |y)−k(x)G(x |y) = −δ(x −y), (6.64)
∂G(x |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�,

G(x |y) = 0 for x ∈ ∂�a, y ∈�.

That is, G(x |y) is Green’s function for the inhomogeneous problem

D�xu(x)−k(x)u(x) = −f (x),

∂u(x)

∂n(x)
= 0 for x ∈ ∂�r,

u(x) = 0 for x ∈ ∂�a,

where f (x) is any square integrable function. It follows that Eq. (6.63) can
be rewritten in terms of Green’s function as

Pr{T <τ |y}=
∫

�

k(x)G(x |y) dx.

The chance to leave before being anchored is found by integrating the con-
ditional probability with respect to the initial uniform distribution of y ∈
�. By definition,

Pr{T <τ }= 1
|�|

∫
�

Pr{T <τ |y}dy = 1
|�|

∫
�

k(x)

∫
�

G(x |y) dy dx. (6.65)

The function

u(x)=
∫

�

G(x |y) dy,

is the solution of the boundary value problem

D�u(x)−k(x)u(x) = −1 for x ∈�, (6.66)

u(x) = 0 for x ∈ ∂�a,

∂u(x)

∂n
= 0 for x ∈ ∂�r (6.67)
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and

Pr{T <τ }= 1
|�|

∫
�

k(x)u(x) dx. (6.68)

To find the asymptotic expansion of Pr{T <τ } for a small opening, we
proceed as above. We compute u(x) from the Neumann function, which is
the solution of

D�N(x |y)−k(x)N(x |y) = −δ(x −y) for x �=y ∈�,
(6.69)

∂N(x |y)

∂n(x)
= 0 for x ∈ ∂�, y ∈�.

From Green’s formula, we obtain

u(y)=
∫

∂�a

N(x |y)
∂u(x)

∂n(x)
dSx +

∫
�

N(x |y) dx. (6.70)

Now

Pr{T <τ } = 1
|�|

∫
�

k(y)u(y) dy

= 1
|�|

∫
�

k(y)

{∫
∂�a

N(x |y)
∂u(x)

∂n(x)
dSx +

∫
�

N(x |y) dx

}
dy

= 1
|�|

∫
�

k(y)

∫
∂�a

N(x |y)
∂u(x)

∂n(x)
dSx dy +1, (6.71)

so that

Pr{τ <T }=− 1
|�|

∫
�

k(y)

∫
∂�a

N(x |y)g(x) dSx dy, (6.72)

where only the function g(x)=∂u(x)/∂n(x) is not known explicitly. It can
be, however, recovered by using the absorbing boundary condition

u(y)=0 for y ∈ ∂�a.

We obtain∫
∂�a

N(x |y)g(x) dSx +
∫

�

N(x |y) dx =0 for y ∈ ∂�a. (6.73)
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The singularity of Neumann’s function for a planar domain is logarithmic,
that is,

N(x |y)=− 1
2π

log |x −y|+vS(x,y) for x,y ∈�, (6.74)

where vS(x,y) is the regular function.
For a planar domain � we use the parametrization of the boundary

by arclength (x(s), y(s)). We assume, as above, that |∂�a|/|∂�r | = ε � 1.
In the case of a unique opening located symmetrically around a point
x0 ∈∂�a , the function g can be approximated using condition (6.73) and a
Taylor expansion. We write (6.73) at the boundary point y = (x(s′), y(s′))
as

− 1
2π

∫ ε

−ε

log(s − s′)2
(

g(0)+ g′′(0)

2
s2 +· · ·

)
ds

=−
∫

�

N(x | (x(s′), y(s′)) dx. (6.75)

The first-order term is

g(0)=
π

∫
�

N(x |x(0), y(0)) dx

2ε log ε
. (6.76)

In general, all derivatives g(k)(0) in identity (6.75) can be computed. An
infinite system of equations has to be solved, in a similar way as it is done
in Appendix II. Here, using (6.76) in Eq. (6.72) and writing

ε log ε Pr{τ <T }=F(ε), (6.77)

we find that F(0)=F ′(0)=0, F ′′(0) �=0. It follows that for ε �1

Pr{τ <T }=O

(
ε

log ε

)
. (6.78)

More precisely, using only the leading order term in the expansion of
Pr{τ <T } for small ε,

Pr{τ <T }=−
∫ ε

−ε

1
|�|

∫
�

k(x)N(x |y(s))g(s) ds dx,
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and using g′(0)=0, we obtain

∂2 Pr{τ <T }
∂ε2

|ε=0 =− 1
|�|

∫
�

k(x)
∂N(x |y(s))

∂s

∣∣∣∣
s=0

g(0) dx. (6.79)

Thus the leading order term is

Pr{τ <T } = − π

2|�|
(∫

�

k(x)
∂N(x |y(s))

∂s

∣∣∣∣
s=0

dx

)

×
(∫

�

N(x |y(0)) dx

)
ε

log ε
+o

(
ε

log ε

)
.

7. CONCLUSION AND BIOLOGICAL IMPLICATIONS

The mathematical problem considered here is that of the exit of a
Brownian motion from a bounded planar domain �, whose boundary is
reflecting, except for a small absorbing arc ∂�a . Setting ε=|∂�a|/|∂�|, we
found that the confinement time of the Brownian particle in the domain is

O

(
log

1
ε

)

for ε �1. If there is an anchor in �, that can terminate the trajectory of
the Brownian motion with a given killing rate, we found that the proba-
bility of reaching ∂�a is

O

(
ε

log ε

)

for ε �1.
The biological consequence of these results is to derive a coarse

grained diffusion constant and to estimate the mean time for a receptor,
such as AMPA, to be fixed in the PSD, after it’s lateral insertion in the
post-synaptic membrane. Under the assumption that the motion of the
receptor in the complex environment of the synapse surface is Brownian,
our computation shows that the mean time to anchoring is of the order
of several minutes, not seconds. This estimate is relevant in the context
of receptor trafficking, induced by LTP: the number of activated AMPA
receptors increases during LTP (see the recent review ref. 8). The increase
in the number of activated receptors can occur in about a minute. We may
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surmise that if the bigger current response after LTP is due to the inser-
tion of new receptors, not to the activation of already anchored receptors,
then some AMPA receptors must already be present extra-synaptically on
the synapse’s membrane, so they won’t have to diffuse all the way from the
point of insertion to their final destination. Thus extrasynaptic receptors
may serve the role of a reserve pool.

Under standard conditions, when no LTP is induced, the floating
receptors should not be able to enter the PSD, to avoid significant fluc-
tuations in the synaptic weight. In reality, however, there is evidence that
receptors traffick in and out of synapses even in the absence of synap-
tic activity. The concentration of synaptic receptors is maintained constant
by a hitherto unknown mechanism that has to be elucidated. A possible
explanation may be that LTP induction induces disruptions, of size ε, say,
in the boundaries of corrals of. This would allow receptors to enter. Such
a prediction is based on the fact that AMPA receptors cannot both be
inserted and reach the PSD in a minute. They should be already there and
ready to move inside the PSD domain.

The lifetime of an AMPA receptor is of the order of 24 h, while the
lifetime of a synapse is of the order of years, so a regulation mechanism,
called the turnover of receptors, is necessary to maintain the number of
receptors, and thus to maintain the synaptic weight.(7,8) Corrals can allow
receptors to move inside the PSD domain, and thus allow the turnover by,
intermittent disruptions of their barriers. It is also not clear how the mem-
brane disruption occurs in the absence of any LTP induction. In partic-
ular, it is not known if new receptors, induced by LTP, follow the same
pathway as the turnover receptors. It is well known that the forming of
AMPA receptors is aided by different transmembrane subunits, GluR1 to
GluR4, that could also play a key role in routing the receptors. If this is
so, one would expect that specific proteins allow turnover receptors to pen-
etrate the corral barrier, so they don’t have to wait for any disruptions,
induced under specific conditions only.

Another possible scenario in trafficking is that AMPA receptors are
waiting extra-synaptically for the disruption of a corral barrier to facili-
tate their diffusion across sub-domains. It is unclear, however, what pro-
duces these disruptions. In vivo, the mean electrical activity of neurons
can control trafficking for the following reason. It has been demonstrated
recently(24) that at every synapse, the total number of AMPA receptors
can be scaled with the activity: the total number of receptors increases at
all synapses when the mean spontaneous activity decreases, but the num-
ber of receptors decreases at synapses when the mean spontaneous activity
increases.
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In molecular terms this means that when calcium enters a synapse,
extrasynaptic AMPA receptors are slowed down, or altogether stopped.(9)

It is then conceivable that spontaneous activity regulates AMPA receptor
trafficking to the PSD by regulating calcium dynamics, and trafficking
regulation is responsible for the scaling property reported in ref. 24. If
so, the role of the spontaneous activity would be to allow the turnover
of receptors and thus cause also the scaling of the synaptic weight by
the mean electrical activity. The precise molecular pathways for such
regulation have yet to be determined. In any case, when the mean activity
decreases, less calcium enters the synapse, and if calcium can for exam-
ple depolymerize actin molecules and create corral disruption, then by
decreasing the mean activity, less polymerization occurs and less corral
zones are open, on the average. This would educe the probability that
receptors move to the PSD. Under this scenario, spontaneous activity is
necessary for receptors to diffuse to the PSD. New models are necessary
to describe the regulation between trafficking and spontaneous activity.
Finally, further experiments should reveal if after LTP, AMPA receptors
indeed move away from their extra-synaptic positions to the PSD. They
should also clarify the role of extra-synaptic receptors in synaptic plasticity.

Acronyms identification

• GABA ( [γ ] -aminobutyric acid),

• GABAr=GABA receptor,

• AMPA( [α] -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid),

• AMPAr=AMPA receptor,

• NMDA (N -methyl-d-aspartate),

• NMDAr=NMDA receptors,

• GRIP, glutamate-receptor-interacting protein (scaffolding proteins),

• PICK, protein that interacts with C kinase (scaffolding proteins),

• mGluRs metabotropic glutamate receptors (mGluRs),

• PSD Postsynaptic densities.

APPENDIX I. FROM A MIXED BOUNDARY VALUE PROBLEM

TO THE NEUMANN PROBLEM

The asymptotic analysis of the confinement time depends on the rep-
resentation of the solution of a mixed boundary value problem in terms of
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the Neumann function. The representation is defined as follow. Consider
the unique solution uf,g of the mixed Neumann–Dirichlet boundary value
problem

�u(x) = 0 for x ∈�,

∂u(x)

∂n
= f (x) for x ∈ ∂�r, (8.80)

u(x) = g(x) for x ∈ ∂�a,

where f, g are two given regular functions, and consider a function vg̃,g,
the solution of

�u(x) = 0 for x ∈�,

∂u(x)

∂n
= g̃ for x ∈ ∂�r, (8.81)

∂u(x)

∂n
= g for x ∈ ∂�a.

Given uf,g, there exists a unique function g̃, which is a function of (f, g),
and a constant C(g̃, g), such that

uf,g =vg̃,g +C(g̃, g). (8.82)

Moreover g̃ has to satisfy the compatibility condition

∫
∂�r

g(x) dSx +
∫

∂�a

g̃(x) dSx =0. (8.83)

This representation is used in Section 1 of this paper, where the Neumann
function is known explicitly for some simple geometric cases.

The Neumann function for the problem (8.80) gives the representa-
tion

f (y)=
∫

∂�a

N(x |y)g̃(x) dSx +
∫

∂�r

N(x |y)g(x) dSx for y ∈ ∂�a.

(8.84)

Eq. (8.84) is and integral equation for g̃(x), given f (x) and g(x).
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APPENDIX II. EXPLICIT COMPUTATION OF THE CONFINEMENT

TIME IN A DISK

In this Appendix, we provide explicit computations to determine the
leading term Cε and the zero order term of the confinement time given by
Eq. (4.35). To determine the function g (θ), as discussed in Section 1, we
expand it in Taylor’s series in the interval |θ |<ε and expand the integral
in (4.34) in powers of θ . The boundary condition (4.31) implies that the
power series has to vanish identically. Truncating the series expansion at n

terms leads to a system of n linear equations for g(0), for the derivatives
g(i)(0), (i = 1,2, . . . , n − 1), and for the unknown constant Cε. An addi-
tional equation is obtained by integrating Eq. (4.29) over the disk,

0=
∫ π

−π

∂vε (R, θ)

∂r
dθ =π − ε +

∫
|θ |<ε

g (θ) dθ. (8.85)

The absorbing boundary condition vε(R, θ)=0 implies that

∫ ε

−ε

log {2 [1− cos(θ −φ)]}
(8.86)

×
[
g (0)+ g′′ (0)

2
φ2 + g(iv) (0)

24
φ4 +· · ·+O

(
φ10

)
− 1

2

]
dφ

−2πCε

R2
=0,

where g is and even function. The integrals are estimated up to the order
10 as follows,

∫ ε

−ε

log {2 [1− cos(θ −φ)]} dφ

=−4ε +4ε ln |ε|+
(

2
ε

)
θ2 + 1

3ε3
θ4 + 2

15ε5 θ6 + 1
14ε7 θ8 + 2

45ε9
θ10+o(θ10),∫ ε

−ε

φ2 log |θ −φ|2 dφ =
(

4
3
ε3 ln ε − 4

9
ε3

)
+ (−2ε) θ2 + 1

ε
θ4 + 2

9ε3
θ6

+ 1
10ε5 θ8 + 2

35ε7 θ10 +o(θ10),∫ ε

−ε

φ4 log |θ −φ|2 dφ =
(

− 4
25

ε5 + 4
5
ε5 ln ε

)
+

(
−2

3
ε3

)
θ2 + (−ε) θ4

+ 2
3ε

θ6 + 1
6ε3

θ8 + 2
25ε5 θ10 +o(θ10),
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∫ ε

−ε

φ6 log |θ −φ|2 dφ =
(

4ε7

7
ln ε − 4

49
ε7

)
+

(
−2

5
ε5

)
θ2 +

(
−1

3
ε3

)
θ4

+
(

−2
3
ε

)
θ6 + 1

2ε
θ8 + 2

15ε3
θ10 +o(θ10),

∫ ε

−ε

φ8 log |θ −φ|2 dφ =
(

4ε9

9
ln ε − 4

81
ε9

)
+

(
−2

7
ε7

)
θ2 +

(
−1

5
ε5

)
θ4

+
(

−2
9
ε3

)
θ6 +

(
−1

2
ε

)
θ8 + 2

5ε
θ10 +o(θ10),

∫ ε

−ε

φ10 log |θ −φ|2 dφ =
(

4ε11

11
ln ε − 4

121
ε11

)
+

(
−2

9
ε9

)
θ2 +

(
−1

7
ε7

)
θ4

+
(
− 2

15
ε5

)
θ6 +

(
−1

6
ε3

)
θ8 +

(
−2

5
ε

)
θ10 +o(θ10).

We denote the unknowns of the system by

a =g (0)− 1
2
, b= g′′ (0)

2
, c= g(iv) (0)

24
,

d = g(6) (0)

6!
, e= g(8) (0)

8!
, f = g(10) (0)

10!
.

Substituting the Taylor expansions into the expression (8.86), we obtain
that

(−4ε +4ε ln ε) a +
(

4
3
ε3 ln ε − 4

9
ε3

)
b+

(
− 4

25
ε5 + 4

5
ε5 ln ε

)
c

+
(

4ε7

7
ln ε − 4

49
ε7

)
d +

(
4ε9

9
ln ε − 4

81
ε9

)
e

+
(

4ε11

11
ln ε − 4

121
ε11

)
f = 2πCε

R2
,

(
2
ε

)
a + (−2ε) b+

(
−2

3
ε3

)
c+

(
−2

5
ε5

)
d +

(
−2

7
ε7

)
e+

(
−2

9
ε9

)
f =0,

1
3ε3

a + 1
ε
b+ (−ε) c+

(
−1

3
ε3

)
d +

(
−1

5
ε5

)
e+

(
−1

7
ε7

)
f =0,

2
15ε5 a + 2

9ε3
b+ 2

3ε
c+

(
−2

3
ε

)
d +

(
−2

9
ε3

)
e+

(
− 2

15
ε5

)
f =0,
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1
14ε7 a + 1

10ε5 b+ 1
6ε3

c+ 1
2ε

d +
(

−1
2
ε

)
e+

(
−1

6
ε3

)
f =0,

2
45ε9

a + 2
35ε7 b+ 2

25ε5 c+ 2
15ε3

d + 2
5ε

e+
(

−2
5
ε

)
f =0.

The solutions are

g (0) = a + 1
2

= 1
2

+ πCε

εR2 (−2.211 2+3.002 2 ln ε)
,

b = πCε

ε3R2 (−3.980 2+5.403 9 ln ε)
,

c = πCε

ε5R2 (−4.643 6+6.304 6 ln ε)
,

d = πCε

ε7R2 (−4.643 6+6.304 6 ln ε)
,

e = πCε

ε9R2 (−3.980 2+5.403 9 ln ε)
,

f = πCε

ε11R2 (−2.211 2+3.002 2 ln ε)
.

Integrating Eq. (8.85), we obtain

0=π − ε +2εg(0)+ 2ε3

3!
g′′(0)+· · ·+ 2ε11

11!
g(10)(0).

By replacing in this expression the value of g(k)(0), we obtain that

Cε =0.73654+ (1+O(ε)) ln
1
ε
.

Hence Eq. (4.36).
In the expansion

τ̄ε =C1(�) ln
1
ε

+C2(�)+O

(
ε ln

1
ε

)
,

Eq. (4.25) gives an explicit expression for C2(�) in terms of the area of
�. A similar evaluation of C2(�) in terms of geometric properties of � is
still an open problem.
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